3-Connected planar graphs are 5-distinguishing colorable with two exceptions
نویسندگان
چکیده
منابع مشابه
Planar graphs with girth at least 5 are (3, 5)-colorable
A graph is (d1, . . . , dr )-colorable if its vertex set can be partitioned into r sets V1, . . . , Vr where themaximum degree of the graph induced by Vi is at most di for each i ∈ {1, . . . , r}. Let Gg denote the class of planar graphs with minimum cycle length at least g . We focus on graphs in G5 since for any d1 and d2, Montassier and Ochem constructed graphs in G4 that are not (d1, d2)-co...
متن کاملAcyclically 3-Colorable Planar Graphs
In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...
متن کامل5-Regular Graphs are 3-Colorable with Positive Probability
We show that uniformly random 5-regular graphs of n vertices are 3-colorable with probability that is positive independently of n.
متن کاملOn uniquely 3-colorable planar graphs
A k-chromatic graph G is called uniquely k-colorable if every k-coloring of the vertex set V of G induces the same partition of V into k color classes. There is an innnite class C of uniquely 4-colorable planar graphs obtained from the K 4 by repeatedly inserting new vertices of degree 3 in triangular faces. In this paper we are concerned with the well-known conjecture (see 6]) that every uniqu...
متن کاملPlanar graphs without 4-, 5- and 8-cycles are 3-colorable
In this paper we prove that every planar graph without 4, 5 and 8-cycles is 3-colorable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ars Mathematica Contemporanea
سال: 2011
ISSN: 1855-3974,1855-3966
DOI: 10.26493/1855-3974.199.a0e